Конденсат бозе эйнштейна применение. Конденсат Бозе — Эйнштейна

Квантовая механика , представляющая собой один из важней­ших разделов современной теоретической физики, была создана сравнительно недавно - в 20-х годах нашего столетия.

Ее основной задачей является изучение поведения микро­частиц, например электронов в атоме, молекуле, твердом теле, электромагнитных полях и т. д.

В истории развития каждого раздела теоретической физики следует различать несколько этапов: во-первых, накопление экс­периментальных фактов, которые нельзя было объяснить с по­мощью существующих теорий, во-вторых, открытие отдельных полуэмпирических законов и создание предварительных гипотез и теорий и, в-третьих, создание общих теорий, позволяющих с единой точки зрения понять совокупность многих явлений.

По мере того как с помощью теории Максвелла-Лоренца объяснялось все большее число явлений микромира (проблема излучения, распространения света, дисперсия света в средах. движение электронов в электрическом и магнитном полях и т.д.). постепенно стали накапливаться и такие экспериментальные факты, которые не укладывались в рамки классических представлений.

При этом для построения теории равновесного электромагнит­ного излучения, фотоэффекта и эффекта Комптона необходимо было ввести предположение о том, что свет наряду с волновыми должен обладать также и корпускулярными свойствами. Это было учтено в теории квантов Планка-Эйнштейна. Дискретная структура света нашла свое описание с помощью введения по­стоянной Планка h=6,62*IO" 27 эрг-сек. Теория квантов была с успехом также использована при построении первой квантовой теории атома-теории Бора, которая опиралась на планетарную модель атома, следовавшую из опытов Резерфорда по рассеянию альфа-частиц различными веществами. С другой стороны, целый ряд экспериментальных данных, та­ких, как дифракция, интерференция пучка электронов, говорили нам о том, что электроны наряду с корпускулярными проявляют также и волновые свойства

Первым обобщающим результатом тщательного анализа всех предварительных теорий, а также экспериментальных дан­ных, подтверждающих как квантовую природу света, так и вол­новые свойства электронов, явилось волновое уравнение Шредингера (1926), позволившее вскрыть законы движения электронов и других атомных частиц и построить после открытия вто­ричного квантования уравнений Максвелла-Лоренца сравни­тельно последовательную теорию излучения с учетом квантовой природы света. С появлением уравнения Шредингера ученые, исследовавшие атом, получили в свои руки такое же мощное оружие, какое в свое время было дано астрономам после появ­ления основных законов механики Ньютона, включая закон все­мирного тяготения

Поэтому не удивительно, что с появлением уравнения Шредингера многие факты, связанные с движением электронов внутри атома, нашли свое теоретическое обоснование.

Однако, как оказалось в дальнейшем, теория Шредингера описывала далеко не все свойства атомов; с ее помощью нельзя было, в частности, правильно объяснить взаимодействие атома с магнитным полем,а тaкжe построить теорию сложных атомов. Это было связано главным образом с тем обстоятельством, что в теории Шредингера не учитывались релятивистские и спиновые свойства элек­трона.

Дальнейшим развитием теории Шреденгера явилась реляти­вистская теория Дирака. Уравнение Дирака позволило описать как релятивистские, так и спиновые эффекты электронов При этом оказалось, что если учет релятивистских эффектов в атомах с одним электроном приводит к сравнительно небольшим коли­чественным поправкам, то при изучении строения атомов с не­сколькими электронами учет спиновых эффектов имеет решаю­щее значение. Только после того как были приняты во внимание спиновые свойства электронов, удалось объяснить правило за­полнения электронных оболочек в атоме и дать периодическому закону Менделеева строгое обоснование.

С появлением уравнения Дирака принципиальные вопросы, связанные со строением электронной оболочки атома, можно было считать в основном разрешенными, хотя углубление наших знаний в развитии отдельных деталей должно было продол­жаться. В связи с этим следует заметить, что в настоящее время подробно изучается влияние так называемого электромагнитного и электронно-позитронного вакуумов, а также влияние магнитных моментов ядер иразмеров ядерна энергетические уровни атомов.

Одной из характерных особенностей первого этапа теории элементарных частиц, получившей название квантовой теории поля, является описание взаимной превращаемости элемен­тарных частиц. В частности, по теории Дирака было предска­зано возможное превращение гамма-квантов в пару электрон-позитрон и обратно, что затем было подтверждено экспери­ментально

Таким образом, если в классической теории между светом и электронами было два различия а) свет-волны, электроны- частицы, б) свет может появляться и поглощаться, число же электронов должно оставаться неизменным, то в квантовой ме­ханике со свойственным ей корпускулярно-волновым дуализмом было стерто первое различие между светом и электронами. Од­нако в ней, так же как и в теории Лоренца, число электронов должно было оставаться неизменным.Только после появления квантовой теории поля, описывающей взаимную превращаемость элементарных частиц, было фактически стерто и второе раз­личие

Поскольку одной из основных задач теоретической физики является изучение реального мира и прежде всего простейших фору его движения, определяющих также и более сложные яв­ления, то естественно, что все эти вопросы всегда связаны с филосовскими вопросами и, в частности, с вопросом позна­ваемости микромира, поэтому не удивительно, что многие крупные физики, сделав­шие важнейшие открытия в области физики, пытались вместе с тем интерпретировать эти открытия с той или иной философской точки зрения. Благодаря таким взглядам был открыт эффект Бозе-Эйнштейновской конденсации.

К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p , то «ассоциированная» с этой частицей волна должна иметь длину волны l = h /p. Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = h n между энергией светового кванта Е и частотой n соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж.Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э.Шрёдингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей.

Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шрёдингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шрёдингера для одной частицы имеет вид

=d /dx

где m – масса частицы, Е – ее полная энергия, V (x ) – потенциальная энергия, а y – величина, описывающая электронную волну. В ряде работ Шрёдингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шрёдингера представляют собой лишь две из множества возможных форм теории. Вскоре Дирак добился неожиданно крупного успеха, продемонстрировав, каким образом квантовая механика обобщается на область очень больших скоростей, т.е. приобретает вид, удовлетворяющий требованиям теории относительности. Постепенно стало ясно, что существует несколько релятивистских волновых уравнений, каждое из которых в случае малых скоростей можно аппрокcимировать уравнением Шрёдингера, и что эти уравнения описывают частицы совершенно разных типов. Например, частицы могут иметь разный «спин»; это предусматривается теорией Дирака. Кроме того, согласно релятивистской теории, каждой из частиц должна соответствовать античастица с противоположным знаком электрического заряда. В то время, когда вышла работа Дирака, были известны только три элементарные частицы: фотон, электрон и протон. В 1932 была открыта античастица электрона – позитрон. На протяжении нескольких последующих десятилетий было обнаружено много других античастиц, большинство из которых, как оказалось, удовлетворяли уравнению Дирака или его обобщениям. Созданная в 1925–1928 усилиями выдающихся физиков квантовая механика не претерпела с тех пор в своих основах каких-либо существенных изменений.

Стоит произнести «квантовая механика», как нам представляются элементарные частицы, атомы или что‑то подобное. На самом деле, формулы квантовой механики вполне применимы к макроскопическим телам. Главное, чтобы эти тела не взаимодействовали с внешним миром, чтобы они были идеально изолированы от него.

Неслучайно особый интерес ученых в последнее время вызывают макроскопические объекты, которые ведут себя по законам квантового мира. Пример тому – конденсат Бозе – Эйнштейна, крохотное облачко из множества атомов, охлажденных до сверхнизкой температуры – до миллиардных долей градуса выше абсолютного нуля, когда тепловое движение практически замирает. Подобное облачко, находясь в магнитной ловушке, ведет себя буквально как один огромный «атом». Отдельные атомы, составившие его, теряют свободу; они перестают быть независимы друг от друга. «Атомы шагают в ногу», – как было метко сказано в одной из статей, посвященных данному явлению. Образовавшийся макроскопический квантовый объект достигает в поперечнике нескольких микрометров; он во много раз больше обычного атома. Теперь этот объект как единое целое реагирует на любые воздействия, хотя между отдельными его атомами почти не действуют никакие связывающие их силы.

Охлажденное до невероятной температуры облачко атомов начинает «шагать в ногу» – возникает конденсат Бозе – Эйнштейна


Причудливый мир атомов. Слева: атомы натрия и йода на поверхности медной подложки. Справа: «стена», возведенная из атомов железа на медной подложке

«Обычно все атомы мельтешат, мчатся кто куда, но если их очень сильно охладить, они начинают вдруг маршировать строем, как армия. Разница почти такая же, как между электрической лампочкой и лазером: у лампочки все частицы света мчатся в разные стороны, а у лазера маршируют. Вот мы и сумели построить лазер, который излучает не свет, а вещество. Собственно говоря, все очень просто, не так ли?» – шутливо пояснял суть открытия немецкий физик Вольфганг Кеттерле, получивший впоследствии Нобелевскую премию за исследование этого конденсата, который представлял собой… новое состояние вещества.

Окружающие нас субстанции пребывают в жидком, твердом или газообразном виде. Однако теория допускает и другие агрегатные состояния. Например, все атомы вещества могли бы сконденсироваться на самом низком энергетическом уровне. Подобный объект должен был реагировать на любые воздействия как единое целое, хотя его частицы ничто не связывает. Его поведение можно было бы описать одной‑единственной волновой функцией. Этот странный феномен предсказал в середине 1920‑х годов Альберт Эйнштейн, анализируя расчеты, которые проделал индийский физик Шатьендранат Бозе. Данная метаморфоза должна произойти в непосредственной близости от абсолютного нуля по шкале Кельвина.

Готовится эксперимент по охлаждению вещества почти до абсолютного нуля и получению конденсата Бозе – Эйнштейна

В самом деле, подобное состояние впоследствии наблюдалось, но получить его в чистом виде не удавалось никак. Так, в сверхпроводниках часть электронов пребывает в виде конденсата Бозе‑Эйнштейна. В сверхтекучем гелии часть атомов тоже ведет себя, как единое целое.

В начале девяностых годов сразу в нескольких научных лабораториях «охотились» за конденсатом Бозе – Эйнштейна. Путь к нему пролегал через область сверхпроводящих материалов. Следующая отметка на пути ученых: 4,2 кельвина (около – 269 °С). При этой температуре гелий становится жидкостью. При температуре, равной 2 Кельвинам, он становится сверхтекучим, то есть, не испытывая трения, проникает в тончайшие капилляры.

Собственно область физики сверхнизких температур начинается при температуре ниже 2 Кельвинов. К середине 1990‑х годов физикам удалось настолько усовершенствовать технологию охлаждения, что открытие нового состояния вещества казалось неминуемым.

Вот один из методов – так называемое лазерное охлаждение. Газ удерживается в магнитной ловушке, а на него направляется лазерный луч. Он поглощает часть кинетической энергии атомов, и это снижает температуру газа. В потоке световых квантов атомы газа тормозятся словно в «оптическом сиропе». Подобным способом в начале 1995 года удалось охладить газ из атомов цезия до температуры, равной 700 нанокельвинам, то есть 0,0000007 кельвина.

Все готово для получения конденсата Бозе – Эйнштейна

Но рекорд держался недолго. В том же году американские физики Эрик Корнелл и Карл Уайман из Национального института стандартов и технологий (Колорадо) сперва охладили газ, образованный из атомов рубидия, до 200 нанокельвинов, а чуть позже побили и этот температурный рекорд. Важную роль сыграл выбор газа. Атомы рубидия из‑за их размеров легче охладить, чем, например, водород. Кроме того, при работе с ними конденсат легче обнаружить. В случае же с водородом газ может сконденсироваться, и никто ничего не заметит.

Рубидиевый газ предварительно охлаждали лазерами, а затем с помощью направленных радиоволн удаляли из магнитной ловушки самые горячие из атомов. «Происходило примерно то же, что и с чашкой кофе, которую остужают, дав испариться самым горячим частичкам напитка», – поясняет Эрик Корнелл.

Наконец, при температуре, равной 170 нанокельвинам, настал долгожданный момент: рубидиевый газ начал конденсироваться, его плотность резко возросла. Все больше атомов занимало самое выгодное энергетическое положение вместо того, чтобы распределяться по различным уровням, что характерно для обычного газа. В центре ловушки скопились две тысячи атомов. Их скорость и направление движения были одинаковы. Это состояние длилось около пятнадцати секунд.

«Когда исследователи поняли, что за добычу они поймали, всех охватило поразительное волнение. Ведь этот сгусток атомов вовсе не был обычным газом! Речь шла о новой форме вещества, которой приписывают диковинные свойства». Подобными сообщениями летом 1995 года пестрели страницы многих газет.

В первых комментариях к этому эксперименту говорилось, что конденсат Бозе‑Эйнштейна мог бы задать новый эталон измерения времени. Что он мог бы проводить тепло лучше, чем металл. Что если сфокусировать его, получится луч, напоминающий лазерный. Подобный луч мог бы стать мощным орудием нанотехнологов. Используя его, можно было бы изготавливать куда более миниатюрные микросхемы, чем теперь.

«Мы проникли в совершенно новую область исследований, – признавался в одном из первых интервью будущий нобелевский лауреат Эрик Корнелл. – Перед нами открываются очень интересные феномены. Я думаю, что в ближайшие годы физика сверхнизких температур переживет свой ренессанс».

Начиная с 1995 года, физики сумели получить конденсат Эйнштейна‑Бозе из атомов рубидия, натрия, водорода и гелия. Во всех случаях он состоял из бозонов – квазичастиц с целым спином (собственным моментом количества движения), стремящихся быть как можно ближе друг к другу.

В 1999 году был впервые получен и конденсат из фермионов – частиц с полуцелым спином, которые стараются держаться друг от друга подальше. В данном случае конденсат содержал атомы калия. Они соединялись попарно, образуя своего рода двухатомные молекулы с целым спином.

Это напоминало появление так называемых пар Купера в сверхпроводниках, то есть пар электронов, способных преодолеть взаимное отталкивание. В комментариях специалистов подчеркивалось: «Если бы удалось перевести фермионный конденсат в твердое состояние, то получившееся вещество могло бы иметь свойства высокотемпературного сверхпроводника».

«Изучение фермионных конденсатов может значительно продвинуть исследования в области высокотемпературной сверхпроводимости, поскольку механизм образования пар атомов имеет тот же характер, что и образование пар Купера, но при этом атомы значительно более устойчивы к влиянию высоких температур», – писал журналист «Известий» Петр Образцов.

Идет эксперимент с конденсатом Бозе – Эйнштейна

Наконец, в апреле 2001 года появились сообщения о том, что сотрудники Rice University (Хьюстон, Техас) получили особое состояние вещества: в нем одновременно присутствовали и бозонный, и фермионный конденсаты.

Группа ученых – ее возглавлял Рэндалл Халет – проводила опыты со смесью, содержавшей изотопы лития‑6 и лития‑7. Атомы последнего ведут себя, как бозоны, поскольку состоят из четного числа элементов: четырех нейтронов, трех протонов и трех электронов. Атомы лития‑6 принадлежат к фермионам. Они состоят из нечетного числа частиц: трех нейтронов, трех протонов и трех электронов. Два одинаковых фермиона не могут находиться в одном и том же месте, двигаться с одной и той же скоростью, в одном и том же направлении.

На мониторе растрового туннельного микроскопа видны горы, сложенные из атомов

Когда атомарное облако охладили до миллионной доли градуса Кельвина, в самом центре магнитной ловушки расположились атомы лития‑7; они образовали компактное облако диаметром около полумиллиметра. При дальнейшем охлаждении оно быстро уменьшалось. Фермионное облако было диффузным, и размеры его мало менялись. В нем действовало так называемое давление Ферми, которое мешало атомам даже при столь низкой температуре скапливаться посредине ловушки. Американские ученые предполагают, что и при более низких температурах фермионное и бозонное облака избегают друг друга и стремятся отдалиться. Подобное явление наблюдалось также в смеси из жидкого гелия‑3 и гелия‑4.

Любопытны и другие исследования конденсата Бозе – Эйнштейна.

Так, Эрик Корнелл и Карл Уайман в опыте с конденсатом из атомов изотопа рубидия добились быстрого чередования сил притяжения и отталкивания атомов. Это привело к почти взрывному расширению конденсата, напоминавшему взрыв сверхновой звезды. Ученые окрестили данный процесс: «Bose‑Nova».

Немецкие физики Йозеф Фортаг и Теодор Хенш, получивший Нобелевскую премию по физике в 2005 году, независимо друг от друга изготовили микросхему, которой можно управлять с помощью капли конденсата Бозе – Эйнштейна. Используя ее, можно накапливать и передавать информацию.

Вольфганг Кеттерле показал, что от конденсата Бозе – Эйнштейна можно «отщипывать» кусочки. Это позволит построить атомный лазер, который будет генерировать излучение вещества, а не света. Конденсат представляет собой идеальную вещественную волну подобно тому, как лазерный свет – идеальную электромагнитную волну. Отдельные его атомы можно описывать волновой функцией, как и когерентный свет. Однако длина волны атомов значительно меньше, чем длина световой волны. С помощью атомного лазера можно создавать самые крохотные структуры, перемещая атомы с точностью до нанометра. Это открытие принесет ощутимый прогресс в нанотехнологии. Преимущество атомных лазеров перед традиционной светооптикой заключается в их чрезвычайно высокой точности. «Применение атомного лазера, – говорит Теодор Хенш, – это, насколько мне известно, самый точный метод, с помощью которого можно манипулировать атомами, целенаправленно перемещая их».

«Применение атомного лазера, – говорит Теодор Хенш, – это… самый точный метод, с помощью которого можно манипулировать атомами, целенаправленно перемещая их»

«Конденсат Бозе – Эйнштейна, – отмечает Кеттерле, – открывает путь к созданию и исследованию совершенно новых материалов». Так, плоские полосы или ленты из конденсата «обладают абсолютно иными свойствами, чем трехмерные объекты. Это – совершенно иная физика».

Конденсат идеально подходит для экспериментального исследования свойств квантовых систем. Кроме того, его можно рассматривать как модель макроскопических систем, в которых множество частиц вынуждены взаимодействовать друг с другом. Так, можно создать «оптическую решетку» из световых волн и поместить внутри нее конденсат Бозе – Эйнштейна. Получится своеобразный объект, в котором охлажденные атомы газа будут располагаться строго в определенных точках пространства – почти как атомы в кристаллической решетке. Этот чрезвычайно охлажденный газ можно использовать в лабораторных экспериментах как упрощенную модель твердого тела. Возможно, эксперименты с конденсатом Бозе‑Эйнштейна помогут, наконец, точно описать механизм высокотемпературной сверхпроводимости.

Остается добавить, что, по сообщению газеты «Известия», «крупнейшие российские специалисты по конденсатам Бозе‑Эйнштейна работают за границей: академик Владимир Захаров – в США, академик Лев Питаевский – в Италии. Эксперименты в этой области в России не ведутся».

БОЗЕ-ЭЙНШТЕЙНА КОНДЕНСАЦИЯ (бозе-конденсация) - квантовое явление, состоящее в том, что в системе из большого числа частиц, подчиняющихся Бозе - Эйнштейна статистике (бозе-газ или бозе-жидкость), при темп-pax ниже вырождения температуры в состоянии с нулевым имяульсом оказывается конечная доля всех частиц системы. Термин "Б--Э. к." основан на аналогии этого явления с конденсацией газа в жидкость, хотя эти явления совершенно различны, т. к. при Б.- Э. к. она происходит в пространстве импульсов, а распределение частиц в координатном пространстве не меняется. Теория Б.- Э. к. построена А. Эйнштейном (A. Einstein) в 1925 и развита Ф. Лондоном (F. London) в 1938.

Поскольку Б.- Э. к. происходит даже в идеальном бозе-газе, её причиной являются свойства волновой ф-ции частиц, а не взаимодействия между ними. Для идеального бозе-газа из Бозе - Эйнштейна распределения

(где T - абс. темп-pa, e р - энергия частицы с импульсом - хим. потенциал) следует, что в низшем энергетич. состоянии с находится частиц. Из положительности следует, что Если фактор вырождения близок к 1, то в состоянии с может быть очень много частиц. Поэтому нельзя пренебрегать вкладом частиц с при вычислении ср. величин. Из условия постоянства полного числа частиц в объёме V следует ур-ние для :

- длина волны де-Бройля, соответствующая тепловому движению, т - масса частицы. Отсюда T 0 - темп-pa бозе-конденсации, или темп-pa вырождения, находится из условия , к-рое записывают в след. виде: .

При T=0 все частицы находятся в конденсате, при в конденсате находится лишь N 0 частиц, а остальные подчиняются с . При давление оказывается ф-цией только темп-ры и не зависит от объёма, т. к. частицы конденсата, не обладая импульсом, не дают вклада в давление. При производная теплоёмкости испытывает конечный скачок, а сама теплоёмкость, энергия и давление остаются непрерывными, следовательно система совершает своеобразный фазовый переход.

при , где а - длина рассеяния для потенциала взаимодействия. Если плотность не мала, то число частиц в конденсате можно оценить вариационным методом. Для бозе-жидкости со взаимодействием молекул как твёрдых сфер диаметра b

Для см, см 3 , поэтому 0,08. По оценкам, основанным на рассеянии нейтронов, плотность конденсата в неск. % и обладает примерно такой же температурной зависимостью, как и плотность сверхтекучей компоненты. Однако плотность частиц конденсата и плотность сверхтекучей компоненты нельзя отождествить, т. к. при T=0 К вся жидкость является сверхтекучей, хотя не все её частицы находятся в конденсате.

Конденсация Бозе-Эйнштейна

Несомненно, одним из наиболее впечатляемых результатов современной физики было полученное в 1995 г. экспериментальное доказательство конденсации Бозе-Эйнштейна. В 1924 г. Эйнштейн предсказал существование особого состояния материи, в котором все атомы с определенными свойствами, т.н. бозоны (со спинами, кратными h), могут оставаться с совершенно одинаковыми квантовыми свойствами. В 1995 г. В 1995 г. Эрик Корнел (г. р. 1962) из Национального Института стандартов и технологий и Карл Виман (г. р. 1951) из университета Колорадо сумели охладить с помощью лазерного пучка атомы рубидия и захватить их в магнитную ловушку. Затем было произведено дополнительное охлаждение с помощью метода, называемого испарительным охлаждением, действующим так же, как охлаждается чашка чая, т.е. позволяя улетучиваться более горячим атомам.

Когда достигается очень низкая температура, атомы в новом состоянии начинают двигаться вместе с одной и той же скоростью и в одном и том же направлении, вместо того, чтобы двигаться произвольно, как это имеет место для обычного газа. Атомы теряют свою индивидуальность и теперь становятся одиночной коллективной единицей. Их организованная конфигурация приводит к необычным свойствам. Конденсация Бозе-Эйнштейна получалась в облаке атомов рубидия-87, которые охлаждались до ~ 170 нК. Самый полный образец содержал около 2000 атомов, которые в течение более, чем 15 сек находились в одиночном квантовом состоянии. Вольфганг Кеттерль (г. р. 1957) и его группа из MIT (США) сумели получить конденсат натрия-23, содержащий в сто раз больше атомов. Корнел, Кеттерль и Виман получили в 2001 г. Нобелевскую премию по физике «за достижение конденсации Бозе-Эйнштейна в разряженных газах и за пионерские, фундаментальные изучения свойств этого конденсата». С помощью конденсата Бозе-Эйнштейна возможно изучить некоторые аспекты квантовой механики и, может быть, лучше понять явление сверхпроводимости (свойство некоторых материалов совершенно терять электрическое сопротивление). Происхождение Вселенной, также связывают в некоторых теориях с конденсацией Бозе-Эйнштейна.

Поведение таких сконденсированных атомов по сравнению с обычными атомами, напоминает отличия лазерного свет от света обычной лампы. В лазерном свете все фотоны в фазе - свойство, которое делает лазерные пучки мощными и способными быть сфокусированными в очень малое пятно. Подобным же образом, атомы в конденсате Бозе-Эйнштейна все находятся в фазе, и физики работают над тем, чтобы они вели себя так, чтобы быть «атомным лазером». Такой пучок атомов допускает манипуляции и измерения в удивительно малых масштабах. В атомном лазере все атомы могут двигаться как один. Такие атомные лазеры можно было бы использовать для помещения атомов на подложку с экстраординарной точностью, заменяя обычную фотолитографию. Можно было бы построить и атомный интерферометр, который, поскольку длины волн атомов (волны де Бройля) много меньше световых, мог бы производить измерения с большей точностью по сравнению с лазерным интерферометром. Это позволило бы создать более точные атомные часы, получить и изучить нелинейные взаимодействия, подобные оптическим, и т.д.

Мы могли бы представить много других применений и будущих перспектив лазеров, но надеемся, что и то, о чем говорилось, вполне достаточно, чтобы понять замечательные возможности лазерных устройств в современном обществе.

Из книги Черные дыры и молодые вселенные автора Хокинг Стивен Уильям

8. Мечта Эйнштейна В первые годы XX века две новые теории совершенно изменили наше представление о пространстве и времени, да и о самой реальности тоже. Более чем через семьдесят пять лет мы все еще осознаем их смысл и пытаемся обобщить их в единую теорию, которая опишет все

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Космологический вклад Эйнштейна Вклад, значительно способствовавший теоретическому осмыслению природы туманностей, поступил в астрономию из Швейцарии. Марсель Гроссман был одним из выпускников швейцарской Высшей технической школы (Политехникума) в Цюрихе. В его

Из книги Капля автора Гегузин Яков Евсеевич

Статья Эйнштейна о лорде Кельвине

Из книги Живой кристалл автора Гегузин Яков Евсеевич

ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века - Альберта Эйнштейна и Петера Дебая. Их достижения относятся к

Из книги История лазера автора Бертолотти Марио

Частная жизнь Эйнштейна После напряженной работы в предыдущие годы, в 1917 г. Эйнштейн серьезно заболел. Его кузина Эльза Эйнштейн, брак которой с торговцем по имени Ловенталь закончился разводом, ухаживала за Эйнштейном и в июне 1919 г. Альберт и Эльза поженились. Эльза,

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Из книги Гиперпространство автора Каку Мичио

Глава 7 Пространство-время Эйнштейна

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

6. Реванш Эйнштейна Суперсимметрия - окончательное решение для полного объединения всех частиц. Абдус Садам Возрождение теории Калуцы-Клейна Эту проблему называли «величайшей в науке всех времен». В прессе ее именовали святым Граалем физики, стремлением объединить

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Мост Эйнштейна-Розена Релятивистское описание черных дыр фигурирует в работе Карла Шварцшильда. В 1916 г., всего через несколько месяцев после того, как Эйнштейн записал свои знаменитые уравнения, Шварцшильд сумел найти для них точное решение и вычислить гравитационное

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Из книги автора

3. Построение уравнений Эйнштейна Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время

Из книги автора

4. Решение уравнений Эйнштейна Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства-времени и тем самым определить его геометрические


Биографы в большинстве своём игнорируют последние 30 лет жизни Эйнштейна, рассматривая их как нечто неловкое, недостойное гения, как пятно на его во всём остальном кристально чистой истории. Однако научный прогресс последних десятилетий позволил нам совершенно по-новому взглянуть на наследие Эйнштейна. Дело в том, что его работа была настолько фундаментальной, так перевернула само основание человеческого знания, что влияние Эйнштейна до сих пор ощущается в физике. Многие семена, посеянные Эйнштейном, прорастают только сейчас, в XXI веке, прежде всего потому, что наши инструменты - космические телескопы, рентгеновские космические обсерватории, лазеры - стали достаточно мощными и чувствительными, чтобы проверить самые разные его предсказания, сделанные несколько десятилетий назад.

Можно утверждать, что крошки со стола Эйнштейна помогают сегодня учёным выиграть Нобелевскую премию. Более того, с появлением теории суперструн эйнштейнова концепция обобщения всех сил, служившая когда-то объектом осмеяния и пренебрежительных комментариев, в наше время выходит на центральное место в мире теоретической физики. В этой главе обсуждаются новые достижения в трёх областях, где наследие Эйнштейна продолжает жить и править миром физики: это квантовая теория, общая теория относительности и космология, а также единая теория поля.

В 1924 году, когда Эйнштейн только написал работу по конденсату Бозе - Эйнштейна, он не думал, что это занятное явление будет обнаружено в сколько-нибудь обозримом будущем. Ведь для того чтобы все квантовые состояния коллапсировали в гигантский суператом, необходимо было охладить материалы почти до абсолютного нуля.

В 1995 году, однако, Эрик Корнелл из Национального института стандартов и технологии и Карл Виман из Университета Колорадо сделали именно это, получив чистый конденсат Бозе - Эйнштейна из 2000 атомов рубидия при температуре на двадцать миллиардных долей градуса выше абсолютного нуля. Кроме того, Вольфганг Кеттерле из Массачусетского технологического института независимо от них тоже получил конденсат Бозе - Эйнштейна, в котором было достаточно атомов натрия, чтобы проводить на нём важные эксперименты. Он доказал, что эти атомы демонстрируют интерференционную картину, соответствующую состоянию, когда атомы скоординированы друг с другом. Иными словами, они вели себя как суператом, предсказанный Эйнштейном более 70 лет назад.

Практическое применение конденсата Бозе - Эйнштейна ещё впереди, пока идёт лишь процесс осознания

После первоначального объявления открытия в этой быстро развивающейся области посыпались как из рога изобилия. В 1997 году в МТИ Кеттерле с коллегами создали первый в мире «атомный лазер» с использованием бозе-эйнштейновского конденсата. Как известно, удивительные свойства лазерному свету придает то, что фотоны движутся в унисон друг с другом, тогда как обычный свет хаотичен и некогерентен. Поскольку вещество тоже обладает волновыми свойствами, рассуждали физики, поток атомов можно сделать когерентным; однако прогресс в этом направлении стопорился из-за отсутствия бозе-эйнштейновского конденсата. Теперь же физики достигли своей цели тем, что сначала охладили набор атомов и превратили их в конденсат, а затем направили на этот конденсат лазерный луч, который выстроил из атомов синхронизированный пучок.

В 2001 году Корнелл, Виман и Кеттерле были удостоены Нобелевской премии по физике. Нобелевский комитет наградил их «за экспериментальное наблюдение бозе-эйнштейновской конденсации в разреженных газах атомов щелочных металлов и за первые фундаментальные исследования свойств таких конденсатов». Практическое применение конденсата Бозе - Эйнштейна ещё впереди, пока идёт лишь процесс осознания. Лучи атомных лазеров могли бы оказаться в будущем ценным инструментом в применении к нанотехнологиям. Возможно, они позволят манипулировать отдельными атомами и создавать слои атомных плёнок для полупроводников в компьютерах будущего.

Помимо атомных лазеров некоторые учёные говорят о построении квантовых компьютеров (компьютеров, вычисляющих при помощи отдельных атомов) на основе бозе-эйнштейновского конденсата, которые со временем могли бы заменить обычные кремниевые компьютеры. Другие говорят о том, что скрытая масса, или тёмная материя, может отчасти состоять из бозе-эйнштейновского конденсата. Если это так, то именно в этом странном состоянии может находиться бо́льшая часть вещества Вселенной.

Кроме того, деятельность Эйнштейна вынудила квантовых физиков заново обдумать свою преданность первоначальной копенгагенской интерпретации этой теории. Ещё в 1930–1940-е годы, когда квантовые физики радостно хихикали за спиной Эйнштейна, игнорировать этого гиганта современной физики было совсем несложно, ведь значительные открытия в квантовой физике делались едва ли не ежедневно. Кто готов был тратить время на проверку фундаментальных положений квантовой теории, когда физики спешили собирать Нобелевские премии как яблоки с ветки? Проводились сотни расчётов по свойствам металлов, полупроводников, жидкостей, кристаллов и других материалов, результаты которых легко могли привести к созданию целых промышленных отраслей. На остальное просто не было времени. Вследствие этого физики десятилетиями просто привыкали к интерпретациям копенгагенской школы, «заметая под ковёр» не имеющие ответа глубокие философские вопросы. Споры Бора с Эйнштейном были забыты. Однако сегодня, когда на многие «простые» вопросы о веществе получены чёткие ответы, гораздо более сложные вопросы, поднятые Эйнштейном, по-прежнему остаются без ответа. В частности, по всему миру проводятся десятки международных конференций, на которых физики заново рассматривают проблему кота Шрёдингера, упомянутую в 7-й главе. Теперь, когда экспериментаторы научились манипулировать отдельными атомами, проб­лема кота перестала носить чисто академический характер. Более того, от её решения может зависеть конечная судьба компьютерных технологий, которыми определяется значительная доля мирового богатства, поскольку компьютеры будущего, возможно, будут работать на транзисторах, построенных из отдельных атомов.

Мы живём по другую сторону стены, где все волновые функции уже схлопнулись

Сегодня признаётся, что из всех альтернативных вариантов копенгагенская школа Бора предлагает наименее привлекательный ответ на проблему кота, хотя до сих пор никаких экспериментальных отклонений от первоначальной боровской интерпретации не обнаружено. Копенгагенская школа постулирует существование «стены», отделяющей повседневный макроскопический мир деревьев, гор и людей, который мы видим вокруг себя, от загадочного контр­интуитивного микроскопического мира квантов и волн. В микроскопическом мире элементарные частицы существуют в промежуточном состоянии между бытием и небытием. Однако мы живём по другую сторону стены, где все волновые функции уже схлопнулись, поэтому наша макроскопическая вселенная кажется нам стабильной и вполне определённой. Иными словами, наблюдателя от наблюдаемого объекта отделяет стена.

Некоторые физики, включая нобелевского лауреата Юджина Вигнера, пошли ещё дальше. Ключевой элемент наблюдения, подчёркивал Вигнер, - это сознание. Чтобы провести наблюдение и определить реальность кота, необходим наделённый сознанием наблюдатель. Но кто наблюдает за наблюдателем? Наблюдателю тоже необходим свой наблюдатель (именуемый «другом Вигнера»), который определил бы, что наблюдатель жив. Но это подразумевает существование бесконечной цепочки наблюдателей, каждый из которых наблюдает за соседом и определяет, что предыдущий наблюдатель жив и здоров. Для Вигнера это означало, что где-то существует, возможно, некое космическое сознание, определяющее природу самой Вселенной! Он писал: «Само изучение внешнего мира привело к выводу о том, что содержимое сознания и есть конечная реальность». Кое-кто утверждал в связи с этим, что это доказывает существование Бога, некоего космического сознания, или то, что сама Вселенная каким-то образом обладает сознанием. Как сказал однажды Планк, «наука не в состоянии разрешить конечную загадку Природы. А всё потому, что в конечном итоге мы сами являемся частью загадки, которую пытаемся разрешить».

За прошедшие десятилетия были предложены и другие интерпретации. В 1957 году Хью Эверетт, в то время аспирант физика Джона Уилера, предложил, возможно, самое радикальное решение проблемы кота - «многомировую» теорию, согласно которой все возможные вселенные существуют одновременно. Кот в самом деле может быть мёртвым и живым одновременно, потому что сама Вселенная расщепилась надвое. Следствия из этой идеи, откровенно говоря, неуютны, поскольку при этом подразумевается, что Вселенная постоянно, каждое квантовое мгновение раздваивается, образуя бесконечное число квантовых вселенных. Сам Уилер, поначалу горячо поддержавший идею своего студента, позже отказался от неё, заявив, что с таким подходом связано слишком много «метафизического багажа». Представьте, к примеру, космический луч, пронзающий в подходящий момент чрево матери Уинстона Черчилля и вызывающий выкидыш. Таким образом, одно квантовое событие отделяет нас от вселенной, в которой Черчилль, способный поднять народ Англии и всего мира на борьбу с убийственными силами Адольфа Гитлера, попросту не родился. В той параллельной вселенной нацисты, возможно, выиграли Вторую мировую войну и поработили значительную часть мира. Или представьте себе мир, где солнечный ветер, запускаемый квантовыми событиями, сбил с пути ту комету или метеорит, который 65 млн лет назад угодил в мексиканский полуостров Юкатан и стёр с лица Земли динозавров. В той параллельной вселенной человек не появился вовсе и Манхэттен, где я сейчас живу, населен неистовыми динозаврами.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: