Виды звуковых волн и их характеристика. Основные характеристики звука Специфические свойства волн звуковых частот

Происходящий в газообразных, жидких и твердых средах, который при достижении органов слуха человека воспринимается им как звук. Частота этих волн лежит в пределах от 20 до 20 000 колебаний в секунду. Приведем формулы для звуковой волны и рассмотрим подробнее ее свойства.

Почему появляется звуковая волна?

Многие люди задаются вопросом, что такое звуковая волна. Природа звука заключается в возникновении возмущения в упругой среде. Например, когда в некотором объеме воздуха происходит возмущение давления в виде сжатия, то данная область стремится распространиться в пространстве. Этот процесс приводит к сжатию воздуха в соседних от источника областях, которые также стремятся расшириться. Данный процесс охватывает все большую и большую часть пространства до тех пор, пока не достигнет какого-либо приемника, например, уха человека.

Общая характеристика звуковых волн

Рассмотрим вопросы, что такое звуковая волна и как она воспринимается человеческим ухом. Звуковая волна является продольной, она при попадании в раковину уха вызывает колебания ушной перепонки с определенной частотой и амплитудой. Также можно представлять эти колебания как периодические изменения давления в микрообъеме воздуха, прилегающего к перепонке. Сначала оно увеличивается относительно нормального атмосферного давления, а затем уменьшается, подчиняясь математическим законам гармонического движения. Амплитуда изменений сжатия воздуха, то есть разница максимального или минимального прессинга, создаваемого звуковой волной, с атмосферным давлением пропорционально амплитуде самой звуковой волны.

Многие физические эксперименты показали, что максимальные давления, которые может воспринимать человеческое ухо без нанесения ему вреда, составляют 2800 мкН/см 2 . Для сравнения скажем, что атмосферное давление вблизи поверхности земли равно 10 млн мкН/см 2 . Учитывая пропорциональность давления и амплитуды колебаний, можно сказать, что последняя величина даже для самых сильных волн является незначительной. Если говорить о длине звуковой волны, то для частоты в 1000 колебаний в секунду она будет составлять тысячную долю сантиметра.

Самые слабые звуки создают колебания давления порядка 0,001мкН/см 2 , соответствующая амплитуда колебаний волны для частоты 1000 Гц составляет 10 -9 см, при этом средний диаметр молекул воздуха составляет 10 -8 см, то есть ухо человека является чрезвычайно чувствительным органом.

Понятие интенсивности звуковых волн

С геометрической точки зрения звуковая волна представляет собой колебания определенной формы, с физической же - главным свойством звуковых волн является их способность переносить энергию. Самым важным примером переноса энергии волной является солнце, излученные электромагнитные волны которого обеспечивают энергией всю нашу планету.

Интенсивность звуковой волны в физике определяется как количество энергии, переносимой волной через единицу поверхности, которая перпендикулярна распространению волны, и за единицу времени. Говоря более коротко, интенсивность волны - это ее мощность, переносимая через единицу площади.

Силу звуковых волн принято измерять в децибелах, которые основываются на логарифмической шкале, удобной для практического анализа результатов.

Интенсивность различных звуков

Следующая шкала в децибелах дает представление о значении различной и ощущениях, которые она вызывает:

  • порог неприятных и некомфортных ощущений начинается со 120 децибел (дБ);
  • клепальный молоток создает шум в 95 дБ;
  • скоростной поезд - 90 дБ;
  • улица с интенсивным автомобильным движением - 70 дБ;
  • громкость обычного разговора между людьми - 65 дБ;
  • современный автомобиль, движущийся с умеренными скоростями, создает шум в 50 дБ;
  • средняя громкость радиоприемника - 40 дБ;
  • тихий разговор - 20 дБ;
  • шум листвы деревьев - 10 дБ;
  • минимальный порог звуковой чувствительности человека близок к 0 дБ.

Чувствительность человеческого уха зависит от частоты звука и составляет максимальное значение для звуковых волн с частотой 2000-3000 Гц. Для звука, находящегося в этом интервале частот, нижний порог чувствительности человека составляет 10 -5 дБ. Более высокие и более низкие частоты, чем указанный интервал, приводят к увеличению нижнего порога чувствительности таким образом, что близкие к 20 Гц и к 20 000 Гц частоты человек слышит только при их интенсивности в несколько десятков дБ.

Что касается верхнего порога интенсивности, после которого звук начинает вызывать неудобства для человека и даже болевые ощущения, то следует сказать, что он практически не зависит от частоты и лежит в пределах 110-130 дБ.

Геометрические характеристики звуковой волны

Реальная звуковая волна представляет собой сложный колебательный пакет продольных волн, который можно разложить на простые гармонические колебания. Каждое такое колебание описывается с геометрической точки зрения следующими характеристиками:

  1. Амплитуда - максимальное отклонение каждого участка волны от равновесия. Для этой величины принято обозначение A.
  2. Период. Это время, за которое простая волна совершает свое полное колебание. Через это время каждая точка волны начинает повторять свой колебательный процесс. Период принято обозначать буквой T и измерять в секундах в системе СИ.
  3. Частота. Это физическая величина, которая показывает, сколько колебаний данная волна совершает за секунду. То есть по своему смыслу она является величиной, обратной к периоду. Обозначается она f. Для частоты звуковой волны формула ее определения через период выглядит следующим образом: f = 1/T.
  4. Длина волны - это расстояние, которое она пробегает за один период колебаний. Геометрически длина волны представляет собой расстояние между двумя ближайшими максимумами или двумя ближайшими минимумами на синусоидальной кривой. Длина колебаний звуковой волны - это расстояние между ближайшими областями сжатия воздуха или ближайшими местами его разрежения в пространстве, где движется волна. Обозначается она обычно греческой буквой λ.
  5. Скорость распространения звуковой волны - это расстояние, на которое распространяется область сжатия или область разряжения волны за единицу времени. Обозначается эта величина буквой v. Для скорости звуковой волны формула имеет вид: v = λ*f.

Геометрия чистой звуковой волны, то есть волны постоянной чистоты, подчиняется синусоидальному закону. В общем случае формула звуковой волны имеет вид: y = A*sin(ωt), где y - значение координаты данной точки волны, t - время, ω = 2*pi*f - циклическая частота колебаний.

Апериодический звук

Многие источники звука можно считать периодическими, например, звук от таких музыкальных инструментов, как гитара, пианино, флейта, но также существует большое количество звуков в природе, которые являются апериодическими, то есть звуковые колебания изменяют свою частоту и форму в пространстве. Технически такой вид звука называется шумом. Яркими примерами апериодического звука является городской шум, шум моря, звуки от ударных инструментов, например, от барабана и другие.

Среда распространения звуковых волн

В отличие от электромагнитного излучения, фотоны которого для своего распространения не нуждаются в какой-либо вещественной среде, природа звука такова, что для его распространения нужна определенная среда, то есть, согласно законам физики, звуковые волны не могут распространяться в вакууме.

Звук может распространяться в газах, в жидкостях и в твердых телах. Основными характеристиками распространяющейся в среде звуковой волны являются следующие:

  • волна распространяется линейно;
  • она распространяется одинаково по всем направлениям в гомогенной среде, то есть от источника звук расходится, образуя идеальную сферическую поверхность.
  • независимо от амплитуды и частоты звука, его волны распространяются с одинаковой скоростью в данной среде.

Скорость звуковых волн в различных средах

Скорость распространения звука зависит от двух основных факторов: от среды, в которой движется волна, и от температуры. В общем случае действует следующее правило: чем более плотной является среда, и чем выше ее температура, тем быстрее в ней движется звук.

Например, скорость распространения в воздухе звуковой волны вблизи поверхности земли при температуре 20 ℃ и влажности 50% составляет 1235 км/ч или 343 м/с. В воде же при данной температуре звук движется быстрее в 4,5 раза, то есть около 5735 км/ч или 1600 м/с. Что касается зависимости скорости звука от температуры в воздухе, то она увеличивается на 0,6 м/с с увеличением температуры на каждый градус Цельсия.

Тембр и тон

Если позволить струне или металлической пластине вибрировать свободно, то она будет производить звуки различной частоты. Очень редко можно встретить тело, которое бы издавало звук одной конкретной частоты, обычно звук какого-либо объекта обладает набором частот в некотором интервале.

Тембр звука определяется количеством гармоник, присутствующих в нем, и их соответствующими интенсивностями. Тембр является субъективной величиной, то есть это восприятие звучащего объекта конкретным человеком. Тембр обычно характеризуют следующими прилагательными: высокий, блестящий, звучный, мелодичный и так далее.

Тон является звуковым ощущением, которое позволяет его классифицировать как высокий или низкий. Данная величина является также субъективной и не может быть измерена каким-либо инструментом. Тон связан с объективной величиной - частотой звуковой волны, но между ними не существует однозначной связи. Например, для одночастотного звука постоянной интенсивности тон растет при увеличении частоты. Если же частота звука остается постоянной, а увеличивается его интенсивность, то тон становится более низким.

Форма источников звука

В соответствии с формой тела, которое совершает механические колебания и тем самым порождает волн бывают трех основных типов:

  1. Точечный источник. Он создает звуковые волны сферической формы, которые быстро убывают при удалении от источника (приблизительно на 6 дБ, если расстояние от источника увеличивается вдвое).
  2. Линейный источник. Он создает волны цилиндрической формы, интенсивность которых убывает медленнее, чем от точечного источника (при каждом увеличении расстояния вдвое относительно источника интенсивность уменьшается на 3 дБ).
  3. Плоский или двумерный источник. Он порождает волны только в определенном направлении. Примером такого источника может быть поршень, двигающийся в цилиндре.

Электронные источники звука

Для создания звуковой волны электронные источники используют специальную мембрану (динамик), которая совершает механические колебания за счет явления электромагнитной индукции. К таким источникам можно отнести следующие:

  • проигрыватели различных дисков (CD, DVD и другие);
  • кассетные магнитофоны;
  • радиоприемники;
  • телевизоры и некоторые другие.

1. Звук. Основные характеристики звукового поля. Распространение звука

А . Параметры звуковой волны

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис 3.1, а ).

Рис.3.

1 . Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 3.

1, б )

,

где a max - амплитуда колебаний; w = 2 p f - угловая частота; f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном .

Сложные колебания характеризуются эффективным значением на временном периоде Т

Для синусоидального процесса справедливо соотношение

Для кривых другой формы отношение эффективного значения к максимальному составляет от 0 до 1.

В зависимости от способа возбуждения колебаний различают:

· плоскую звуковую волну , создаваемую плоской колеблющейся поверхностью;

· цилиндрическую звуковую волну , создаваемую радиально колеблющейся боковой поверхностью цилиндра;

· сферическую звуковую волну , создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковуюволну, являются:

· звуковое давление p зв, Па;

· интенсивность звука I , Вт/м 2 .

· длина звуковой волны l , м;

· скорость распространения волны с , м/с;

· частота колебаний f , Гц.

Если в сплошной среде возбудить колебания, то они расходятся во все стороны. Наглядным примером являютсяколебания волн на воде. При этом следует различать скорость распространения механических колебаний u (в нашем случае видимые поперечные колебания воды) и скорость распространения возмущающего действия с (продольные акустические колебания).

С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Длина волны l равна длине пути, проходимого звуковой волной за один период Т:

гдес - скорость звука, Т = 1/f .

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.3.3) . В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср -p атм.(3.1)

Рис.3.3. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением z A , которое измеряется в Па * с/м (или в кг/(м 2 *с) и представляет собойотношение звукового давления p зв к колебательной скорости частиц среды u

z A = p зв /u = r* с , (3.2)

гдес - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных средзначения z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна

I = W / (4 p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

Цель работы

Изучить основы теории записи-воспроизведения звука, основные характеристики звука, способы преобразования звука, устройство и особенности применения аппаратуры для преобразования и усиления звука, получить навыки их практического применения.

Теоретическая справка

Звуком называется колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твердой среде, которые, воздействуя на слуховой анализатор человека, вызывают слуховые ощущения. Источником звука является колеблющееся тело, например: колебания струны, вибрация камертона, движение диффузора громкоговорителя и др.

Звуковой волной называется процесс направленного распространения колебаний упругой среды от источника звука. Область пространства, в которой распространяется звуковая волна, называется звуковым полем. Звуковая волна представляет собой чередование сжатий и разряжений воздуха. В области сжатия давление воздуха превышает атмосферное, в области разряжения – меньше его. Переменная часть атмосферного давления называется звуковым давлением Р . Единица измерения звукового давления – Паскаль (Па ) (Па=Н/м 2) . Колебания, имеющие синусоидальную форму (рис. 1), называются гармоническими. Если излучающее звук тело колеблется по синусоидальному закону, то звуковое давление также изменяется по синусоидальному закону. Известно, что любое сложное колебание можно представить как сумму простых гармонических колебаний. Совокупности значений амплитуд и частот этих гармонических колебаний называются соответственно спектром амплитуд и спектром частот .

Колебательное движение частиц воздуха в звуковой волне характеризуется рядом параметров:

Период колебания (Т), наименьший промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебательное движение, за это время совершается одно полное колебание. Период колебания измеряется в секундах (с ).

Частота колебаний (f), число полных колебаний в единицу времени.

где: f – частота колебаний; Т – период колебаний.

Единица измерения частоты – герц (Гц ) – одно полное колебание в секунду (1 кГц = 1000 Гц ).

Рис. 1. Простое гармоническое колебание:
А – амплитуда колебания, Т – период колебания

Длина волны (λ ), расстояние, на котором укладывается один период колебания. Длина волны измеряется в метрах (м ). Длина волны и частота колебания связаны соотношением:

где с – скорость распространения звука.

Амплитуда колебаний (А) , наибольшее отклонение колеблющейся величины от состояния покоя.

Фаза колебания.

Представим себе окружность, длина которой равна расстоянию между точками А и Ε (рис. 2), или длине волны на определенной частоте. По мере «вращения» этой окружности ее радиальная линия в каждом отдельно взятом месте синусоиды будет находиться на определенном угловом расстоянии от начальной точки, что и будет значением фазы в каждой такой точке. Фазу измеряют в градусах.

Звуковая волна при столкновении с поверхностью частично отражается под тем же углом, под которым падает на эту поверхность, ее фаза при этом не изменяется. На рис. 3 проиллюстрирован фазовая зависимость отраженных волн.

Рис. 2. Синусоидальная волна: амплитуда и фаза.
Если длина окружности равна длине волны на определенной частоте (расстояние от А до Е), то по мере вращения, радиальная линия этой окружности, будет показывать угол, соответствующий значению фазы синусоиды в конкретной точке

Рис. 3. Фазовая зависимость отраженных волн.
Звуковые волны разных частот, излучаемые источником звука с одной и той же фазой, после прохождения одинакового расстояния достигают поверхности с разной фазой

Звуковая волна способна огибать препятствия, если ее длина больше размеров препятствия. Это явление называется дифракцией . Дифракция особенно заметна на низкочастотных колебаниях, имеющих значительную длину волны.

Если две звуковых волны имеют одинаковую частоту, то они взаимодействуют между собой. Процесс взаимодействия называется интерференцией. При взаимодействии синфазных (совпадающих по фазе) колебаний происходит усиление звуковой волны. В случае взаимодействия противофазных колебаний результирующая звуковая волна слабеет (рис. 4). Звуковые волны, частоты которых значительно отличаются друг от друга, не взаимодействуют между собой.

Рис. 4. Взаимодействие колебаний, находящихся в фазе (а) и в противофазе (б):
1, 2 – взаимодействующие колебания, 3 – результирующие колебания

Звуковые колебания могут быть затухающими и незатухающими. Амплитуда затухающих колебаний постепенно уменьшается. Примером затухающих колебаний может служить звук, возникающий при однократном возбуждении струны или ударе гонга. Причиной затухания колебаний струны является трение струны о воздух, а также трение между частицами колеблющейся струны. Незатухающие колебания могут существовать, если потери на трение компенсируются притоком энергии извне. Примером незатухающих колебаний являются колебания чашечки школьного звонка. Пока нажата кнопка включения, в звонке существуют незатухающие колебания. После прекращения подвода энергии к звонку колебания затухают.

Распространяясь в помещении от своего источника, звуковая волна переносит энергию, расширяется до тех пор, пока не достигнет граничных поверхностей этого помещения: стен, пола, потолка и т.д. Распространение звуковых волн сопровождается уменьшением их интенсивности. Это происходит из-за потерь звуковой энергии на преодоление трения между частицами воздуха. Кроме того, распространяясь во все стороны от источника, волна охватывает все большую область пространства, что приводит к уменьшению количества звуковой энергии на единицу площади, с каждым удвоением расстояния от сферического источника сила колебаний частиц воздуха падает на 6 дБ (в четыре раза по мощности) (рис. 5).

Рис. 5. Энергия сферической звуковой волны распределяется на все возрастающую площадь волнового фронта, благодаря чему звуковое давление теряет 6 дБ с каждым удвоением расстояния от источника

Встречая на своем пути препятствие, часть энергии звуковой волны проходит сквозь стены, часть поглощается внутри стен, а часть отражается обратно внутрь помещения. Энергия отраженной и поглощенной звуковой волны в сумме равна энергии падающей звуковой волны. В разной степени все три вида распределения звуковой энергии присутствуют практически во всех случаях
(рис. 6).

Рис. 6. Отражение и поглощение звуковой энергии

Отраженная звуковая волна, потеряв часть энергии, изменит направление и будет распространяться до тех пор, пока не достигнет других поверхностей помещения, от которых она снова отразится, потеряв при этом еще часть энергии, и т.д. Так будет продолжаться до тех пор, пока энергия звуковой волны окончательно не угаснет.

Отражение звуковой волны происходит по законам геометрической оптики. Хорошо отражают звук вещества большой плотности (бетон, металл и др.). Поглощение звуковой волны объясняется несколькими причинами. Звуковая волна расходует свою энергию на колебания самого препятствия и на колебания воздуха в порах поверхностного слоя препятствия. Отсюда следует, что пористые материалы (войлок, поролон и др.) сильно поглощают звук. В помещении, заполненном зрителями, звукопоглощение больше, чем в пустом. Степень отражения и поглощения звука веществом характеризуется коэффициентами отражения и поглощения. Эти коэффициенты могут иметь величину от нуля до единицы. Коэффициент, равный единице, указывает на идеальное отражение или поглощение звука.

Если источник звука находится в помещении, то к слушателю поступает не только прямая, но и отраженная от различных поверхностей звуковая энергия. Громкость звука в помещении зависит от мощности источника звука и количества звукопоглощающего материала. Чем больше звукопоглощающего материала размещено в помещении, тем меньше громкость звука.

После выключения источника звука за счет отражений звуковой энергии от различных поверхностей в течение некоторого времени существует звуковое поле. Процесс постепенного затухания звука в закрытых помещениях после выключения его источника называется реверберацией. Длительность реверберации характеризуется т.н. временем реверберации , т.е. временем, в течение которого интенсивность звука уменьшается в 10 6 раз, а его уровень на 60 дБ. Например, если звучание оркестра в концертном зале достигает уровня в 100 дБ при уровне фонового шума около 40 дБ, то финальные аккорды оркестра при затухании растворятся в шуме при падении их уровня примерно на 60 дБ. Время реверберации – важнейший фактор, определяющий акустическое качество помещения. Оно тем больше, чем больше объем помещения и чем меньше поглощение на ограничивающих поверхностях.

Величина времени реверберации влияет на степень разборчивости речи и качество звучания музыки. Если время реверберации излишне велико, то речь становится неразборчивой. При слишком малом времени реверберации речь разборчива, но звучание музыки становится неестественным. Оптимальное время реверберации в зависимости от объема помещения составляет около 1–2 с.

Основные характеристики звука.

Скорость звука в воздухе равняется 332,5 м/с при 0°С. При комнатной температуре (20°С) скорость звука составляет около 340 м/с. Скорость звука обозначается символом «с ».

Частота. Звуки, воспринимаемые слуховым анализатором человека, образуют диапазон звуковых частот. Принято считать, что этот диапазон ограничен частотами от 16 до 20000 Гц. Эти границы весьма условны, что связано с индивидуальными особенностями слуха людей, возрастными изменениями чувствительности слухового анализатора и методом регистрации слуховых ощущений. Человек может различить изменение частоты на 0,3% на частоте порядка 1 кГц.

Физическое понятие звука охватывает как слышимые, так и неслышимые частоты колебаний. Звуковые волны с частотой ниже 16 Гц условно называют инфразвуком, выше 20 кГц – ультразвуком. Область инфразвуковых частот снизу практически не ограничена – в природе встречаются инфразвуковые колебания с частотой в десятые и сотые доли Гц.

Звуковой диапазон условно разделен на несколько более узких диапазонов (табл. 1).

Таблица 1

Диапазон звуковых частот условно разбит на поддиапазоны

Интенсивность звука (Вт/м 2) определяется количеством энергии, переносимой волной за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны. Ухо человека воспринимает звук в весьма широком интервале интенсивности: от самых слабых слышимых звуков до самых громких, например создаваемых двигателем реактивного самолета.

Минимальная интенсивность звука, при которой возникает слуховое ощущение, называется порогом слухового восприятия. Он зависит от частоты звука (рис. 7). Наибольшей чувствительностью к звуку человеческое ухо обладает в диапазоне частот от 1 до 5 кГц, соответственно и порог слухового восприятия здесь имеет наименьшее значение 10 -12 Вт/м 2 . Эта величина принята за нулевой уровень слышимости. При действии шумов и др. звуковых раздражений порог слышимости для данного звука повышается (Маскировка звука – физиологический феномен, заключающийся в том, что при одновременном восприятии двух или нескольких звуков разной громкости более тихие звуки перестают быть слышимыми), причем повышенное значение сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться в зависимости от возраста, физиологического состояния, тренированности.

Рис. 7. Частотная зависимость стандартного порога слышимости
синусоидального сигнала

Звуки высокой интенсивности вызывают ощущение давящей боли в ушах. Минимальная интенсивность звука, при которой возникает ощущение давящей боли в ушах (~10 Вт/м 2), называется порогом болевого ощущения. Так же как и порог слухового восприятия, порог болевого ощущения зависит от частоты звуковых колебаний. Звуки, интенсивность которых приближается к болевому порогу, оказывают вредное воздействие на слух.

Нормальное ощущение звука возможно, если интенсивность звука находится между порогом слышимости и болевым порогом.

Оценку звука удобно проводить по уровню (L ) интенсивности (звукового давления), рассчитываемому по формуле:

где J 0 – порог слухового восприятия, J – интенсивность звука (табл. 2).

Таблица 2

Характеристика звука по интенсивности и его оценка по уровню интенсивности относительно порога слухового восприятия

Характеристика звука Интенсивность (Вт/м 2) Уровень интенсивности относительно порога слухового восприятия (дБ)
Порог слухового восприятия 10 -12
Тоны сердца, генерируемые через стетоскоп 10 -11
Шепот 10 -10 –10 -9 20–30
Речевые звуки при спокойной беседе 10 -7 –10 -6 50–60
Шум, связанный с интенсивным движением транспорта 10 -5 –10 -4 70–80
Шум, создаваемый концертом рок-музыки 10 -3 –10 -2 90–100
Шум вблизи работающего двигателя самолета 0,1–1,0 110–120
Порог болевого ощущения

Наш слуховой аппарат способен к восприятию огромного динамического диапазона. Изменения в давлении воздуха, вызываемые самыми тихими из воспринимаемых на слух звуков, составляют порядка 2×10 -5 Па. В то же время звуковое давление с уровнем, приближающимся к порогу болевых ощущений для наших ушей, составляет порядка 20 Па. В итоге, соотношение между самыми тихими и самыми громкими звуками, которые может воспринимать наш слуховой аппарат, 1:1000000. Измерять такие разные по уровню сигналы в линейной шкале достаточно неудобно.

С целью сжатия такого широкого динамического диапазона было введено понятие «бел». Бел – это простой логарифм отношения двух степеней; а децибел равен одной десятой бела.

Чтобы выразить акустическое давление в децибелах, необходимо возвести давление (в Паскалях) в квадрат и разделить его на квадрат эталонного давления. Для удобства возведение в квадрат двух давлений выполняется вне логарифма (что является свойством логарифмов).

Для преобразования акустического давления в децибелы применяется формула:

где: P – интересующее нас акустическое давление; P 0 – исходное давление.

Когда в качестве эталонного давления берется 2×10 -5 Па, то звуковое давление, выраженное в децибелах, называется уровнем звукового давления (SPL – от англ. sound pressure level). Таким образом, звуковое давление, равное 3 Па , эквивалентно уровню звукового давления 103,5 дБ, следовательно:

Вышеупомянутый акустический динамический диапазон можно выразить в децибелах в виде следующих уровней звукового давления: от 0 дБ – для самых тихих звуков, 120 дБ – для звуков на уровне болевого порога, до 180 дБ – для самых громких звуков. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение ушей.

Громкость звука, величина, характеризующая слуховое ощущение для данного звука. Громкость звука сложным образом зависит от звукового давления (или интенсивности звука ), частоты и формы колебаний. При неизменной частоте и форме колебаний громкость звука растет с увеличением звукового давления (рис. 8.). Громкость звука данной частоты оценивают, сравнивая её с громкостью простого тона частотой 1000 Гц. Уровень звукового давления (в дБ) чистого тона с частотой 1000 Гц, столь же громкого (сравнением на слух), как и измеряемый звук, называется уровнем громкости данного звука (в фонах ) (рис. 8).

Рис. 8. Кривые равной громкости – зависимость уровня звукового давления (в дБ) от частоты при заданной громкости (в фонах).

Спектр звука.

Характер восприятия звука органами слуха зависит от его спектра частот.

Шумы обладают сплошным спектром, т.е. частоты содержащихся в них простых синусоидальных колебаний образуют непрерывный ряд значений, целиком заполняющих некоторый интервал.

Музыкальные (тональные) звуки обладают линейчатым спектром частот. Частоты входящих в их состав простых гармонических колебаний образуют ряд дискретных значений.

Каждое гармоническое колебание называется тоном (простым тоном). Высота тона зависит от частоты: чем больше частота, тем выше тон. Ощущение высоты звука определяется его частотой. Плавное изменение частоты звуковых колебаний от 16 до 20000 Гц воспринимается вначале как низкочастотное гудение, затем как свист, постепенно переходящий в писк.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам спектра, называются обертонами. Если частоты обертонов кратны частоте f о основного тона, то обертоны называются гармоническими, причем основной тон с частотой f о называется первой гармоникой, обертон со следующей по величине частотой 2f о – второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр определяется составом обертонов – их частотами и амплитудами, а также характером нарастания амплитуд в начале звучания и их спада в конце звучания.


Похожая информация.


2.2 Звуковые волны и их свойства

Звук - это механические колебания, которые распространяются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания, слушать их отразились в названии учения о звуке - акустика.

Вообще человеческое ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

То, что воздух - проводник звука, было доказано поставленным опытом Роберта Бойля в 1660 году. Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания из под него воздуха - звук будет делаться слабее, и наконец, прекратится.

При своих колебаниях тело попеременно то сжимает слой воздуха, прилегающий к его поверхности, то, наоборот, создаёт разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.

Процесс распространения колебаний в пространстве с течением времени называется волной. Длиной волны называют расстояние между двумя ближайшими частицами среды, находящимися в одинаковом состоянии.

Физическая величина, равная отношению длины волны к периоду колебаний ее частиц, называется скоростью волны.

Колебания частиц среды, в которой распространяется волна, являются вынужденными. Поэтому их период равен периоду колебаний возбудителя волны. Однако скорость распространения волн в различных средах различна.

Звуки бывают разные. Мы легко различаем свист и дробь барабана, мужской голос (бас) от женского (сопрано).

Об одних звуках говорят, что они низкого тона, другие мы называем звуками высокого тона. Ухо их легко различает. Звук, создаваемый большим барабаном, это звук низкого тона, свист - звук высокого тона.

Простые измерения (развертка колебаний) показывают, что звуки низких тонов - это колебания малой частоты в звуковой волне. Звуку высокого тона соответствует большая частота колебаний. Частота колебаний в звуковой волне определяет тон звука.

Существуют особые источники звука, испускающие единственную частоту, так называемый чистый тон. Это камертоны различных размеров - простые устройства, представляющие собой изогнутые металлические стержни на ножках. Чем больше размеры камертона, тем ниже звук, который он испускает при ударе по нему.

Если взять несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон даёт низкий звук, а маленький - наиболее высокий.

Звуки даже одного тона могут быть разной громкости. Громкость звука связана с энергией колебаний в источнике и в волне. Энергия же колебаний определяется амплитудой колебаний. Громкость, следовательно, зависит от амплитуды колебаний.

В том, что распространение звуковых волн происходит не мгновенно, можно увидеть из простейших наблюдений. Если в дали происходит гроза, выстрел, взрыв, свисток паровоза, удар топором и т.п., то сначала все эти явления видно, а только потом, спустя некоторое время, слышен звук.

Как и всякая волна, звуковая волна характеризуется скоростью распространения колебаний в ней.

Скорость звука различна в разных средах. Например в водороде скорость распространения звуковых волн любой длины равна 1284 м/c, в резине - 1800 м/с, а в железе - 5850 м/c.

Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до предельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые человеком звуковые волны с частотами ниже 16 Гц называют инфразвуком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.

Этим неслышимым звукам нашли много применения.

Ультразвуки и инфразвуки имеют очень важную роль и в живом мире. Так, например, рыбы и другие морские животные чутко улавливают инфразвуковые волны, создаваемые штормовыми волнениями. Таким образом, они заранее чувствуют приближение шторма или циклона, и уплывают в более безопасное место. Инфразвук - это составляющая звуков леса, моря, атмосферы.

При движении рыб, создаются упругие инфразвуковые колебания, распространяющиеся в воде. Эти колебания хорошо чувствуют акулы за много километров и плывут навстречу добыче.

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

Эхо - волна, отраженная от какого-либо препятствия и принятая наблюдателем. Звуковое эхо воспринимается ухом раздельно от первичного сигнала. На явлении эхо основан метод определения расстояний до различных предметов и обнаружения их месторасположений. Допустим, что каким-нибудь источником звука испущен звуковой сигнал и зафиксирован момент его испускания. Звук встретил какое-то препятствие, отразился от него, вернулся и был принят приёмником звука. Если при этом был измерен промежуток времени между моментами испускания и приёма, то легко найти и расстояние до препятствия. За измеренное время t звук прошёл расстояние 2s, где s - это расстояние до препятствия, а 2s - расстояние от источника звука до препятствия и от препятствия до приёмника звука.

По этой формуле можно найти расстояние до отражателя сигнала. Но надо ещё знать, где он находится, в каком направлении от источника сигнал встретил его. Между тем звук распространяется по всем направлениям, и отраженный сигнал мог прийти с разных сторон. Чтобы избежать этой трудности используют не обычный звук, а ультразвук.

Главная особенность ультразвуковых волн состоит в том, что их можно сделать направленными, распространяющимися по определённому направлению от источника. Благодаря этому по отражению ультразвука можно не только найти расстояние, но и узнать, где находится тот предмет, который их отразил. Так можно, например, измерять глубину моря под кораблем.

Звуколокаторы позволяют обнаруживать и определять местоположение различных повреждений в изделиях, например пустоты, трещины, постороннего включения и др. В медицине ультразвук используют для обнаружения различных аномалий в теле больного - опухолей, искажений формы органов или их частей и т.д. Чем короче длина ультразвуковой волны, тем меньше размеры обнаруживаемых деталей. Ультразвук используется также для лечения некоторых болезней.

Акустика океана

Вторым, малоизвестным неспециалистам, видом движения морской воды являются внутренние волны. Хотя они открыты в океане уже давно, на рубеже XIX и XX вв. (экспедиция Нансена на "Фраме" и работа Экмана, объяснившего наблюдения мореплавателей)...

Акустика океана

Теперь о поверхностных волнах, о собственно морском волнении. Пожалуй, в море нет другого явления, которое так широко известно. От древних мореплавателей и философов до художников и поэтов современности, от старого деда...

Волны де–Бройля и их физическое толкование

Вычислим групповую скорость распространения волн де-Бройля, как и во всех случаях, фазовую и групповую скорость, фазовая скорость будет (6) Так как, то фазовая скорость волн де - Бройля больше скорости света в пустоте...

Исследование звуковых волн

Известно, что звук распространяется в пространстве только при наличии какой-либо упругой среды. Среда необходима для передачи колебаний от источника звука к приемнику, например к уху человека. Другими словами...

Изучение механических волн начинают с формирования общих представлений о волновом движении. Состояние колебательного движения передается от одного колеблющегося тела к другому при наличии связи между ними...

Применение электромагнитных волн

Волной называют колебания, распространяющиеся в пространстве с течением времени. Важнейшей характеристикой волны является ее скорость. Волны любой природы не распространяются в пространстве мгновенно. Их скорость конечна...

Развитие оптики

Следующий шаг в развитии волновой теории света был сделан Гюйгенсом. По существу, он создал волновую теорию света и объяснил на ее основе все известные на тот момент явления. Впервые идею волновой природы света высказывали Марти в 1648 г. и в 1665 г...

Описанные прежде волны обусловленные силами упругости, но существуют так же волны, образование которых обусловлено силой тяжести. Волны, распространяющиеся по поверхности жидкости, не являются ни продольными...

Физические основы звука

Звук является объектом слуховых ощущений, поэтому оценивается человеком также и субъективно. Воспринимая тоны, человек различает их по высоте. Высота - субъективная характеристика, обусловленная прежде всего частотой основного тона...

Характеристика движения тел

2.1 Кинематика колебательного движения Контрольные вопросы 1. Колебания - это процессы обладающие некоторой повторяемостью во времени. Гармонические колебания - колебания, происходящие по закону синуса и косинуса...

Электромагнитные волны и их свойства

Электромагнитные волны представляют собой распространение электромагнитных полей в пространстве и времени. Как уже было отмечено выше, существование электромагнитных волн было теоретически предсказано великим английским физиком Дж...

Пение птиц, шум дождя и ветра, раскаты грома, музыка – всё, что мы слышим, мы считаем звуком.

С научной точки зрения звук – это физическое явление, которое представляет собой механические колебания, распространяющиеся в твёрдой, жидкой и газообразной среде . Они и вызывают слуховые ощущения.

Как появляется звуковая волна

Нажать на картинку

Все звуки распространяются в виде упругих волн. А волны возникают под действием упругих сил, появляющихся, когда тело деформируют. Эти силы стремятся вернуть тело в исходное состояние. Например, натянутая струна в неподвижном состоянии не звучит. Но стоит только отвести её в сторону, как под действием силы упругости она будет стремиться занять своё первоначальное положение. Вибрируя, она становится источником звука.

Источником звука может быть любое колеблющееся тело, например, закреплённая с одной стороны тонкая стальная пластинка, воздух в музыкальном духовом инструменте, голосовые связки человека, колокольчик и т.д.

Что происходит в воздухе при возникновении колебания?

Как любой газ, воздух обладает упругостью. Он сопротивляется сжатию и тут же начинает расширяться, когда давление уменьшается. Любое давление на него он равномерно передаёт в разные стороны.

Если с помощью поршня резко сжать воздух, то в этом месте сразу же увеличится давление. Оно тут же передастся соседним слоям воздуха. Они будут сжиматься, и давление в них увеличится, а в предыдущем слое уменьшится. Так по цепочке чередующиеся зоны повышенного и пониженного давления передаются дальше.

Отклоняясь в стороны поочерёдно, звучащая струна сжимает воздух сначала в одном направлении, а затем в противоположном. В том направлении, куда отклонилась струна, давление становится выше атмосферного на какую-то величину. С противоположной стороны давление на такую же величину уменьшается, так как воздух там разрежается. Сжатия и разрежения будут чередоваться и распространяться в разные стороны, вызывая колебания воздуха. Эти колебания и называются звуковой волной . А разность между атмосферным давлением и давлением в слое сжатия или разрежения воздуха называют акустическим, или звуковым давлением.

Нажать на картинку

Звуковая волна распространяется не только в воздухе, но и в жидкой, и в твёрдой среде. Например, вода прекрасно проводит звук. Мы слышим под водой удар камня. Шум винтов надводного корабля улавливает акустик подводной лодки. Если на один конец деревянной доски положить наручные механические часы, то, приложив ухо к противоположному концу доски, мы услышим их тиканье.

Будут ли различаться звуки в вакууме? Английский физик, химик и богослов Роберт Бойль, живший в XVII веке, поместил часы в стеклянный сосуд, из которого откачал воздух. Тиканья часов он не услышал. Это означало, что звуковые волны в безвоздушном пространстве не распространяются.

Характеристики звуковой волны

Форма звуковых колебаний зависит от источника звука. Наиболее простую форму имеют равномерные, или гармонические колебания. Их можно представить в виде синусоиды. Такие колебания характеризуются амплитудой, длиной волны и частотой распространения колебаний.

Амплитуда

Амплитудой в общем случае называют максимальное отклонение тела от положения равновесия.

Так как звуковая волна состоит из чередующихся областей высокого и низкого давления, то её часто рассматривают как процесс распространения колебаний давления. Поэтому говорят об амплитуде давления воздуха в волне.

От амплитуды зависит громкость звука. Чем она больше, тем громче звук.

Каждый звук человеческой речи имеет форму колебаний, свойственную только ему. Так, форма колебаний звука «а» отличается от формы колебаний звука «б».

Частота и период волны

Количество колебаний в секунду называется частотой волны .

f = 1/Т

где Т – период колебаний. Это промежуток времени, за который совершается одно полное колебание.

Чем больше период, тем меньше частота, и наоборот.

Единица измерения частоты в международной системе измерений СИ – герц (Гц). 1 Гц – это одно колебание в секунду.

1 Гц = 1 с -1 .

К примеру, частота в 10 Гц означает 10 колебаний в 1 секунду.

1 000 Гц = 1 кГц

От частоты колебаний зависит высота тона. Чем выше частота, тем выше тон звука.

Человеческое ухо способно воспринимать не все звуковые волны, а только лишь те, которые имеют частоту от 16 до 20 000 Гц. Именно эти волны и считаются звуковыми. Волны, частота которых ниже 16 Гц, называют инфразвуковыми, а свыше 20 000 Гц – ультразвуковыми.

Человек не воспринимает ни инфразвуковые, ни ультразвуковые волны. Но животные и птицы способны слышать ультразвук. Например, обыкновенная бабочка различает звуки, имеющие частоту от 8 000 до 160 000 Гц. Диапазон, воспринимаемый дельфинами, ещё шире, он колеблется от 40 до 200 тысяч Гц.

Длина волны

Длиной волны называют расстояние между двумя ближайшими точками гармонической волны, находящимися в одинаковой фазе, например, между двумя гребнями. Обозначается как ƛ .

За время, равное одному периоду, волна проходит расстояние, равное её длине.

Скорость распространения волны

v = ƛ / T

Так как T = 1/f,

то v = ƛ·f

Скорость звука

Попытки определить скорость звука с помощью экспериментов предпринимались ещё в первой половине XVII века. Английский философ Фрэнсис Бэкон в своей работе «Новый органон» предложил свой способ решения этой задачи, основанный на разности скоростей света и звука.

Известно, что скорость света значительно выше скорости звука. Поэтому во время грозы сначала мы видим вспышку молнии, а уже затем слышим раскаты грома. Зная расстояние между источником света и звука и наблюдателем, а также время между вспышкой света и звуком, можно рассчитать скорость звука.

Идеей Бэкона воспользовался французский учёный Марен Марсенн. Наблюдатель, находящийся на некотором расстоянии от человека, стрелявшего из мушкета, зафиксировал время, прошедшее от световой вспышки до звука выстрела. Затем величину расстояния разделили на время и получили скорость звука. По результатам эксперимента скорость оказалась равной 448 м/с. Это был приблизительный расчёт.

В начале XIX века группа учёных Парижской академии наук повторила этот опыт. По их расчётам скорость света имела значение 350-390 м/с. Но и эта цифра не была точной.

Теоретически скорость света пытался вычислить Ньютон. В основу своих расчётов он положил закон Бойля-Мариотта, описывавший поведение газа в изотермическом процессе (при постоянной температуре). А так бывает, когда объём газа изменяется очень медленно, успевая отдать окружающей среде тепло, возникающее в нём.

Ньютон же предполагал, что между областями сжатия и разрежения температура выравнивается быстро. Но этих условий нет в звуковой волне. Воздух плохо проводит тепло, а расстояние между слоями сжатия и разрежения велико. Тепло из слоя сжатия не успевает перейти в слой разрежения. И между ними возникает разность температур. Поэтому расчёты Ньютона оказались неверными. Они давали цифру в 280 м/с.

Французский учёный Лаплас сумел объяснить, что ошибка Ньютона заключалась в том, что звуковая волна распространяется в воздухе в адиабатических условиях, при изменяющейся температуре. Согласно расчётам Лапласа, скорость звука в воздухе при температуре 0 о С равняется 331,5 м/с. Причём, она возрастает с возрастанием температуры. И при повышении температуры до 20 о С она будет равна уже 344 м/с.

В разных средах звуковые волны распространяются с разной скоростью.

Для газов и жидкостей скорость звука вычисляется по формуле:

где с –скорость звука,

β - адиабатическая сжимаемость среды,

ρ – плотность.

Как видно из формулы, скорость зависит от плотности и сжимаемости среды. В воздушной среде она меньше, чем в жидкой. Например, в воде при температуре 20 о С она равна 1484 м/с. Причём, чем выше солёность воды, тем с большей скоростью в ней распространяется звук.

Впервые скорость звука в воде измерили в 1827 г. Этот эксперимент чем-то напоминал измерение скорости света Мареном Марсенном. С борта одной лодки в воду спустили колокол. На расстоянии более 13 км от первой лодки находилась вторая. На первой лодке ударяли в колокол и одновременно поджигали порох. На второй лодке фиксировали время вспышки, а затем время прихода звука от колокола. Разделив расстояние на время, получили скорость звуковой волны в воде.

Самую высокую скорость звук имеет в твёрдой среде. Например, в стали она достигает более 5000 м/с.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: